If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-32x+160=0
a = 1; b = -32; c = +160;
Δ = b2-4ac
Δ = -322-4·1·160
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{6}}{2*1}=\frac{32-8\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{6}}{2*1}=\frac{32+8\sqrt{6}}{2} $
| -14+4(x-4)+6x=3x-16 | | -30x+270-x+9=0 | | 7(3/5x-14)=28 | | 20=v− | | 12x+30=12 | | 9x^2+30x+35=10 | | X^2-8=4x-12 | | 12y+20=17y | | 20=v−20=v− | | V=r2 | | 36-2x=-x=2 | | 3(x-6)-2(x+4)=-20 | | 6(2x+5)=12 | | 2/3x+1/2=2/5-1/3x+2/5 | | A=r2 | | -x^2+32x-160=0 | | (2x+1)/3+(1/2)=3x | | F(10)=2x+4 | | w+3=−4w+3=−4. | | 6w-40=-2(w-8) | | 6b+1=-4b-9 | | 2b+6(b-4);b=8 | | 3^(3x)=(6^(9x))+4 | | 17=2x-2 | | C=15n+85C=15n+85 | | 5(2c+7)-3c=7(c+5 | | -38-(-35)=x/2 | | 2x-12=3x-3+ | | 30=-6y+4(y+4) | | x^2+32x-160=0 | | |x|=20 | | (x-5)^4=80 |